Home About Writers Categories Recent Issues Subscribe Contact File Transfer





Brad Train
rad Train is the General Manager overseeing day-to-day operations of Saturn West & Saturn East for the owner Scott Davies. He joined the Wichita Saturn team in 1994 as a Sales Consultant, after 3 years he entered the Saturn Management Team. Brad is a graduate of Southeast High and Butler Community College. He and his wife Michelle have 3 children; Shelby, Andrew and Jacob. You can contact Brad at (316)219-5500, or by e-mail at bradtrain@saturnwichita.com
Car Salespersons Are People Too
2003-06-01 12:47:00
All about hang gliding...
ANSWER: The hang glider is actually a triangle-shaped airfoil, a modified parachute (known as a flexible wing) made of nylon or Dacron fabric. The triangular shape is maintained by rigid aluminum tubes and cables and is designed to allow air to flow over the surface to make the wing rise. Newer, high-performance hang-glider designs use a rigid wing with stiff aluminum struts inside the fabric to give it shape, eliminating the need for supporting cables.    To launch, the pilot must run down a slope to get air moving across the wing at about 15 to 25 miles per hour (24 to 40 kph). This movement of air over the surface of the wing generates lift, the force that counters gravity and keeps the glider aloft. Once aloft, gravity (the weight of the hang glider and pilot) pulls the glider back toward Earth and propels the glider forward, continually causing air to flow over the wing. In addition to the horizontal movement of air, hang gliders can get lift from rising currents of air, such as columns of hot air (thermal lift) or air deflected upward by mountainous or ridge topography (ridge lift). As the hang glider and pilot move through the air, they collide with air molecules. The frictional force caused by these collisions is known as drag, which slows the glider down. The amount of drag is proportional to the airspeed of the hang glider: The faster the glider moves, the more drag it creates.    As with soarplane gliders, the balance of these three forces (lift, drag, gravity) determines how high the hang glider can go, how far it can travel and how long it can stay aloft. The performance of a hang glider and the distance it can travel is determined by its glide ratio (lift/drag ratio), the ratio of the forward distance traveled to the vertical distance dropped. Unlike soarplane gliders, hang gliders have neither movable surfaces on the wing nor a tail to deflect airflow and maneuver the craft. Instead, the pilot is suspended from the hang glider's center-of-mass (hence the term "hang" glider) by way of a harness, maneuvering the hang glider by shifting his or her weight (changing the center-of-mass) in the direction of the intended turn. The pilot can also change the angle that the wing makes with the horizontal axis (angle of attack), which determines the airspeed and the glide ratio of the hang glider. If the pilot pulls back on the glider, tipping its nose down, the glider speeds up. If the pilot pushes forward on the glider, tipping its nose up, the glider slows down or even stalls. In stalling, no air flows over the wing so the glider can't fly.
 
The Q & A Times Journal accepts no responsibility for unsolicited manuscripts or photographs.Materials will not be returned unless accompanied by a stamped, self-addressed envelope. Thank you.
 
Wildcard SSL Certificates